

SUSTAINABLE DESIGN AND ADAPTIVE REUSE OF BUILDING 170 AT FORT MCPHERSON

6 DECEMBER 2000

BRIEFING TO THE ARMY WORLDWIDE ENVIRONMENTAL AND ENERGY CONFERENCE

DAVID S. EADY
ARMY ENVIRONMENTAL POLICY INSTITUTE

OUTLINE

- BRIEFING PURPOSE
- PROJECT OBJECTIVES
- DESIGN OBJECTIVES
- CHARRETTE RESULTS
- ANTICIPATED PERFORMANCE

BRIEFING PURPOSE

- DESCRIBE OUTPUTS AND OUTCOMES FROM A "CASE STUDY" SUSTAINABLE DESIGN CHARRETTE
- EXPLAIN CONSIDERATIONS FOR ADAPTIVE REUSE OF HISTORICAL PROPERTIES
- SUGGEST APPLICATIONS OF LESSONS LEARNED TO FUTURE RENOVATION PROJECTS

PROJECT OBJECTIVES

- SUPPORT TENANT AND INSTALLATION MISSION
- PRESERVE HISTORIC INTEGRITY AND VALUE
 - Historic structure with 21st Century engineering and technology
- DEMONSTRATE "BEST PRACTICES"
 - In both building science and sustainable design/construction
 - Underlying premise: "the building is the briefing"
- PROVIDE WORLD-CLASS WORKING ENVIRONMENT

DESIGN OBJECTIVES

- DEMONSTRATE SUSTAINABLE DESIGN
- IMPROVE LIFECYCLE COST EFFECTIVENESS
- OPTIMIZE RESOURCE EFFICIENCY AND LIFECYCLE PERFORMANCE
- MINIMIZE RESOURCE AND ECOLOGICAL IMPACTS
- COMPLIMENT COMMUNITY CHARACTER AND IMPROVE QUALITY OF LIFE

DESIGN PROCESS

- INTEGRATED PLANNING AND DESIGN
 - AEPI partnership with FORSCOM and Garrison
 - Multidisciplinary "tiger team" of experts
 - 2-3 day design "charrette" (funded by FORSCOM and AEPI)
 - "Whole systems" approach to building design
- PERFORMANCE-BASED CRITERIA
- ENVIRONMENTALLY PREFERABLE PURCHASING

DESIGN CONSIDERATIONS

- DOI GUIDANCE ON REHABILITATION AND RESTORATION OF HISTORIC STRUCTURES
- U.S. GREEN BUILDING COUNCIL'S LEED™ RATING SYSTEM
 - SITE PLANNING
 - WATER EFFICIENCY
 - MATERIALS (INCLUDES ARCHITECTURE)
 - ENERGY & ATMOSPHERE
 - INDOOR ENVIRONMENTAL QUALITY (IEQ)

DESIGN RECOMMENDATIONS

- SITE PLANNING
- WATER EFFICIENCY
- ARCHITECTURE & MATERIALS
- ENERGY EFFICIENCY

SITE PLANNING

REDUCE "HEAT ISLAND" EFFECT

- Implement alternative groundcover strategies to cool the site
- Increase shading of parking areas and site amenities

PLANT NATIVE TREES AND SHRUBS

- Minimize intensity and cost of grounds maintenance
- Improve shading of building for energy efficiency
- Mitigate building-related CO2 emissions

INTEGRATE WITH HISTORIC LANDSCAPE

- Enhance shading along corridor to Main Gate and public transit
- Use landscaping schemes consistent with historic plantings

WATER EFFICIENCY

CAPTURE / REUSE RAINWATER AND GRAYWATER

- Irrigate site green-spaces
- Filter and divert to water cooling tower
- Contribute to Fort McPherson "closed-loop" system

INSTALL HIGH-EFFICIENCY FIXTURES

- Explore use of "waterless urinals"
- Use sensors for sinks, urinals and toilets to control flow

• TREAT WASTEWATER ON-SITE USING ECOLOGICAL PROCESSES

 Explore feasibility of using "living machines" or constructed wetlands to treat wastewater used and/or collected on-site

ARCHITECTURE & MATERIALS

- RESTORATION AND CONTINUED USE OF HISTORIC ARCHITECTURAL FEATURES
 - Restore existing windows or replace with historic reproductions
 - Remove connector between buildings to restore historic façade
- IMPROVE ENERGY EFFICIENCY OF BUILDING ENVELOPE
 - Insulate roofline with R-30 and seal roof vents to accommodate HVAC equipment housed in attic space
 - Install high efficiency "storm windows" to inside of existing windows
 - Add insulating materials to inside of exterior wall to increase R-Value
- INSTALL WATER-PROOF APRON AROUND BUILDING BASE
 - Divert bulk moisture from the foundation wall

ARCHITECTURE & MATERIALS

- INVENTORY AND SALVAGE REUSABLE AND/OR RECYCLABLE MATERIALS
 - Reuse granite/marble bathroom stalls and ceramic tile, when feasible
 - Retain 80% of interior walls for historic character and waste reduction
 - Reuse brick and plaster for site improvements
- PURCHASE MATERIALS FROM LOCAL RESOURCES
 - Give preference to Atlanta region, then Georgia and Southeast
- USE ENVIRONMENTALLY PREFERABLE PRODUCTS
 - Explore recycled rubber roofing shingles in lieu of slate materials
 - Lease "floor-covering service" from local carpeting manufacturers

ENERGY EFFICIENCY

USE OFF-GRID POWER SUPPLY

- Demonstrate fuel cell technology and capture waste heat
- Integrate solar technologies, as feasible and appropriate

USE DAY-LIGHTING AND CONTROLLED LIGHT INTENSITY

- Raise ceiling to original 11' height and restore, replace or install transoms (as needed) over interior doors
- Use high-efficiency fluorescent lights with dimmable ballasts, occupancy sensors and daylight intensity sensors
- Reduce lighting load to <0.3 watts per square foot

INSTALL ENERGY EFFICIENT "SUPERWINDOWS"

- Minimize summer heat gain: SHGC < 0.4; R-Value > R-5 (whole unit)
- Maximize day-lighting: VT > 0.7
- Optimize windows based on orientation

ENERGY EFFICIENCY

INSTALL LOW-PRESSURE VARIABLE AIR VOLUME SYSTEM

- Attic located system supplies looped ducts on each floor
- Maintain a constant pressure in the ductwork, varying air volume based on occupant demand
- Flow through supply vents independently controlled for comfort
- Maintain positive pressure in the building to minimize infiltration of poor quality air and to remove moisture and radon potentially collecting in basement

INSTALL SEPARATE FRESH AIR VENTILATION SYSTEM

- Outside air captured at the roof level for higher quality outside air
- System would filter air for optimum quality and possibly pre-treat for cooling/heating as needed
- Controls IAQ and uses "free energy" periods in fall and spring

ANTICIPATED PERFORMANCE

- "GOLD CERTIFIED" RATING ON LEED™ SYSTEM
 - ESTIMATED SCORE: 70% OF POSSIBLE POINTS
- 50-60% ENERGY USE REDUCTION FROM BASELINE
 - ASSUMES ENVELOPE UPGRADES, DAYLIGHT HARVESTING, (VARIABLE) HIGH-EFFICIENCY LIGHTING, HVAC UPGRADES, ETC.
- 50-60% ANNUAL ENERGY COST REDUCTION
 - EST. BASELINE = \$25K/YR; EST. SAVINGS = \$14K/YR
- NO ADDITIONAL "FIRST COST"
 - WITHIN 5% CONTINGENCY FOR AUTHORIZED FUNDING
 - NOT INCLUDED: SITE IMPROVEMENTS, FUEL CELL (R&D-FUNDED), OFFICE FURNISHINGS, AND COMMUNICATION/DATA SYSTEMS

LESSONS LEARNED

- SUSTAINABLE DESIGN FOR HISTORIC RESTORATIONS MUST BALANCE EFFICIENCY WITH "CHARACTER"
- RENOVATION PROJECTS OFTEN INCLUDE MULTIPLE TASK ORDERS VERSUS ONE "DESIGN / BUILD" CONTRACT FOR MILCON
- PROJECTS NEED COMMITTED LEADERS AND KNOWLEDGEABLE MANAGERS TO ENSURE EFFECTIVE IMPLEMENTATION OF INTEGRATED DESIGNS
- SUSTAINABLE DESIGN AND ADAPTIVE REUSE PROJECTS CAN COST NO MORE THAN NEW CONSTRUCTION
- ADAPTIVE REUSE OF HISTORIC PROPERTIES CAN RESULT IN ENERGY EFFICIENT, HIGH QUALITY BUILT ENVIRONMENTS